

An Improved Chemical Extraction Procedure for the Sr Isotope Analysis of Liquid Agrifood Samples Applied to Authenticating the Origin of Maple Syrups in Quebec (Canada)

B. Saar de Almeida¹ | R. Stevenson¹ | M. Sadiki² | L. Lagacé² | D. Widory¹

¹Université du Québec à Montréal (UQAM)/GEOTOP, Montréal, Quebec, Canada | ²Centre de recherche, de développement et de transfert technologique acéricole Inc. (Centre ACER), St-Norbert d'Arthabaska, Quebec, Canada

Correspondence: B. Saar de Almeida (saar_de_almeida.bruna@uqam.ca)

Received: 26 November 2024 | Revised: 20 March 2025 | Accepted: 30 April 2025

Funding: Postdoctoral scholarship for B. Saar de Almeida was provided by the MITACS organization (grant no. IT26291).

Keywords: food traceability | maple syrup | Quebec | soils | strontium isotopes

ABSTRACT

Rationale: We describe a new simplified sample preparation technique, based on dual chromatography for the analysis of ⁸⁷Sr/⁸⁶Sr in liquid agri-food samples. We applied this approach for authenticating the origin of maple syrup products in Quebec, characterizing the ⁸⁷Sr/⁸⁶Sr of soil profiles from geologically distinct maple groves, including maple tree components and maple syrup products.

Methods: In our simplified technique, $3\,\mathrm{mL}$ of the organic liquids was poured into a 15-mL centrifuge tube, diluted with $10\,\mathrm{mL}$ of Mill-Q H $_2$ O, and manually shaken to produce a thin juice. The thin juice was subsequently loaded in two $7.5\,\mathrm{mL}$ aliquots onto 10-mL Bio-RadTM chromatography columns containing $4\,\mathrm{mL}$ of cleaned AG50-X8 resin (100–200 mesh in a 1-N HCl solution). Once the sample was absorbed by the resin, the organic fraction of the thin juice was eluted by adding $3\times 5\,\mathrm{mL}$ of 1-N HCl. The Sr and other cations were subsequently recovered by adding $2\times 5\,\mathrm{mL}$ of 6-N HCl.

Results: The maple groves and the ⁸⁷Sr/⁸⁶Sr ratios for maple syrup from 39 different producing areas in Quebec indicated that no isotope fractionation occurs between the syrup, the maple trees, and the corresponding labile fraction of the soil they grew upon. This suggests that ⁸⁷Sr/⁸⁶Sr provides a reliable isotope fingerprint for the provenance of maple syrups. Gathering available agrifood ⁸⁷Sr/⁸⁶Sr data across the Quebec province, we constructed the first bioavailable ⁸⁷Sr/⁸⁶Sr map based on actual agrifood data. **Conclusions:** This study reported an improved method for Sr separation for ⁸⁷Sr/⁸⁶Sr studies in liquids by combining two different cation-exchange chromatography steps. Data were used to develop a bioavailable ⁸⁷Sr/⁸⁶Sr map that can be used to predict the geographical origin of agrifood products from southern Quebec.

1 | Introduction

Maple syrup is one of Canada's most important non-timber forest products (NTFPs). The province of Quebec accounts for 91% of the Canadian production (more than 11 million gallons by year) representing the world's largest and most prestigious

producer of maple syrup (75% of the world's production). Maple syrup is produced from the sap collected from maple trees (*Acer saccharum*) in the early spring. During the spring thaw, the difference in night-time (-5° C to -10° C) and day-time (5° C to 10° C) temperatures creates pressure inside the tree that enables the sap to flow through a collection system.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2025 The Author(s). Rapid Communications in Mass Spectrometry published by John Wiley & Sons Ltd.

The sap is collected and concentrated by boiling (water evaporation) or by reverse osmosis followed by evaporation. The concentrate mostly consists of sucrose, glucose, fructose, and trace levels of oligosaccharides, organic acids, minerals, and amino acids (e.g., [1, 2]). Calcium (Ca), magnesium (Mg), and potassium (K) represent the major metals present in maple sap and syrup [3].

The certification of food products, their authenticity, and origins is a growing priority for consumers and producers. Fingerprinting Canadian maple syrups requires the development and implementation of forensic tools to link them to their corresponding production areas or terroir. Radiogenic isotope systematics including strontium (Sr) isotopes have proven value for authenticating food provenance (e.g., [4-6]). Sr is an alkaline Earth metal, occurring in nature as Sr²⁺. It can substitute for Ca²⁺ in a variety of rock-forming minerals such as feldspars, gypsum, plagioclase, apatite, and carbonates [3, 7]. Sr has four naturally occurring stable isotopes whose abundances range from 0.55% to 0.58% for ⁸⁴Sr, from 9.75 to 9.99% for ⁸⁶Sr, from 6.94 to 7.14% for ⁸⁷Sr, and from 82.3 to 82.8% for ⁸⁸Sr [8]. ⁸⁴Sr, ⁸⁶Sr, and ⁸⁸Sr isotopes occur in relatively stable percentages, whereas 87Sr gradually increases through 87Rb radioactive decay. Thus, 87Sr/86Sr mainly depends on the nature and age of the host rock: Older rocks and higher Rb contents yield more radiogenic 87Sr/86Sr ratios due to the prolonged production of 87Sr due to 87Rb decay.

Radiogenic isotope systematics such as Sr isotopes are increasingly used to authenticate the geographical origin of numerous agri-food products (wine, milk, ciders, e.g., [9-11]). The underlying theory is that Sr concentrations and ⁸⁷Sr/⁸⁶Sr isotope ratios in agri-food products are derived from the soil on which they grew. More precisely, the Sr absorbed by the plants is derived from the labile fraction (water/organic acid soluble portion) of the soil, and the chemical extraction of the labile fraction has been described elsewhere (e.g., [5, 12, 13]). The application of Sr isotopes to provenance studies requires the analysis of a high number of samples, and thus, rapid sample digestion, chemical separation, and analytical procedures are desired. Agri-food products pose a problem for the rapid digestion of the samples due to the high content of organic material that leaves a black, relatively insoluble residue when attacked by mineral acids such as hydrochloric, nitric, and/or hydrofluoric acids. Removal/ digestion of the organic material requires time-consuming digestion of the sample via heat and/or repeated application of oxidizing reagents (nitric acid and/or peroxide; e.g., [5]).

We propose a simplified sample preparation technique that removes the need for sample heating or digestion/oxidation and that can be applied to most organic-based liquids prior to Sr purification.

This purification technique was tested using maple syrup from different maple grooves from Quebec, Canada. These analyses are supported by soil profiles from two different maple syrup production areas. The selected samples span 3 different geological domains with well-defined ages: the Grenville province (from Archean to Mesoproterozoic), the St. Lawrence Platform (upper and middle Ordovician), and the Appalachian Orogen (Cambrian and lower Ordovician).

This paper has three objectives: (i) test a simplified purification technique for high-sugar agrifood beverages, by analyzing samples of maple syrup using MC-ICP-MS and TIMS; (ii) constraining the Sr isotope relationship between the soil, plant, sap, sap concentrate, and ultimately the maple syrup, focusing specifically on determining if the Sr isotope ratios are preserved during absorption from the soil and across the evaporation cycles; (iii) authenticating the origin of maple syrups using Sr isotope systematics coupled with a geological map of Quebec (1:2000.000, [14]).

Houle et al. [15] recently investigated the link between the ⁸⁷Sr/⁸⁶Sr ratios of sugar maple's tree rings and soil samples in 3 different places in Quebec, but, to our knowledge, strontium isotope ratios in maple syrup have never been tested. The maple syrup analyses are compared with previous Sr isotope studies of grapes, wine, milk, and cheese from the same geological provinces within Quebec [5, 11, 12].

2 | Methods

2.1 | State of Art

The Sr isotope tracing technique was developed by geoscientists to date the age of igneous rocks (geochronology) and trace the origin of geological reservoirs (crust vs. mantle) that gave rise to the rock in question. Sample preparation of rock samples typically involves crushing the rock to obtain a representative powder, followed by acid digestion of the rock to obtain a solution containing the Sr. The Sr is subsequently purified by ion exchange chromatography and then the isotope composition is analyzed via mass spectrometry. Rock dissolution by acid digestion is relatively straightforward involving either HCl or HNO $_3$ (carbonates) or a combination of HF and HNO $_3$ (silicates).

The digestion of wine, maple syrup, or honey typically involves the addition of a combination of nitric acid (HNO $_3$) and peroxide (H $_2$ O $_2$) to digest the organic material. For example, [16] studied the trace element geochemistry of maple syrup from Nova Scotia. Their sample preparation began with oxidizing the maple syrup with 10% HNO $_3$ for 24h, followed by additional attacks of concentrated HNO $_3$ and H $_2$ O $_2$ to eventually obtain a clear liquid for ICP-MS concentration analysis. Similar digestion recipes have been used to obtain organic-free liquids for Sr isotopes in wine and cider [5, 9, 12, 17–19]. The method often requires repeated applications of either HNO $_3$ and/or peroxide.

Microwave digestion of organic samples such as wine and honey using nitric acid and ${\rm H_2O_2}$ has been shown to speed up the digestion and oxidation but requires specialized microwave ovens and containers (e.g., [9, 20]). Alternatively, [21] used ultraviolet radiation and peroxide to decompose organic material in diluted wine samples prior to cation exchange chromatography. Durante et al. [22] proposed a simplified chemical protocol for extracting Sr from wine that involved equilibrating wine samples with concentrated nitric acid over a 12-h period that resulted in a mineralized solution from which the Sr was extracted via cation exchange. The ashing

technique is frequently used to reduce solid organic samples to an acid-soluble ash and has been used to prepare liquid organic substances such as honey for Sr isotopes analyses [23]. The above sample preparation protocols involve combinations of concentrated acids that can lead to larger reagent blanks, with possible vigorous reactions between organic-rich liquids and acids/peroxide, and often require multiple treatments to oxidize the organic material.

We describe below a simplified sample preparation protocol for organic liquids such as maple syrup, wine, or honey that removes the need for digestion reactions requiring combinations of nitric acid and peroxide. The method is based on the softening/decalcification of thin juice by cation chromatography, a technique that has been employed by sugar and fruit juice manufacturers for over 70 years. Color in sugars (cane or beet sugar) is caused by the presence of natural organic molecules as well as molecules produced during the refining process [24, 25]. The removal of unwanted color in sugar and softening of sugar (removal of K, Ca, and Fe) has been an important process in sugar refining since the early 20th century [26]. Naturally occurring Ca in the sugars also poses a problem in the refining process because evaporation of the sugar slurry during refining leads to large deposits of Ca (scaling) on the equipment [27]. The sugar industry found solutions to this problem by passing water-diluted sugar juice (thin juice) through a cation exchange resin ([27]) that yielded Ca-free, softened (hydrogenated) thin juice. This simple process is essentially exactly what is desired in order to isolate Sr for Sr isotope studies of agri-food beverages.

We outline below a two-column chromatography procedure that eliminates the need for acid digestion of liquid agrifood products. In this procedure, the sugar or beverage is diluted to form a thin juice, acidified, and loaded into a cation exchange column that traps the cations (Ca, Sr, K) in the juice. The juice and organic material are eluted, leaving behind the desired cations. The cations are subsequently eluted, and the Sr is purified via a second chromatography step.

2.2 | Sampling Strategy

Samples from distinct producers were provided by the Centre ACER (Centre for Maple Research, Development and Technology Transfer in Quebec, Canada). The sampling sites were entered into a georeferenced database, using ArcGIS ENRI facilities, including background geology from the geological service of the government of Quebec, Canada [14].

A total of 39 maple syrup samples were selected from different maple syrup production areas spanning three geological provinces of contrasting age, structure, and rock types. These are the Grenville, Appalachian, and St. Lawrence platform geological provinces (Figure 1).

The Grenville Province is largely characterized by high-grade metamorphic orthogneiss and paragneiss complexes with protolith ages ranging from 1.0 to 2.7 Ga. The province is bounded by the Superior and Churchill provinces in the north and sedimentary rocks of the St. Lawrence Platform and the Appalachian Province to the south. Cambrian-aged rifting associated with the opening of the Iapetus Ocean along the southeastern margin of the Canadian Shield deposited sandstones, shales, and carbonates (570-430 Ma) that characterize the St. Lawrence platform. These Cambrian to Devonianaged sedimentary rocks are largely flat lying and overlay the Grenville Province. The Iapetus Ocean was closed by thrusting associated with the Acadian and Taconic orogenies that formed the Appalachian Province of Southern Quebec. These Appalachian orogenies folded, faulted, and metamorphosed the volcanic and sedimentary rocks (600-300 Ma) that formed outboard of the St. Lawrence Platform [28].

A detailed study of four soil profiles was carried out in maple groves within the Grenville (Nominingue) and Appalachian (Saint Norbert d'Arthabaska) geological provinces (Figure 2). The soil profiles from the Laurentide region of the Grenville Province (La1 and La2) are underlain by rocks from the Lacoste Magmatic suite, consisting of metamorphosed plutons that are

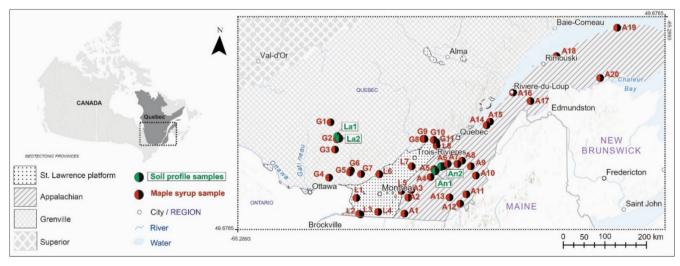


FIGURE 1 | Map showing maple syrup sampling and soil profile locations and the surrounding geological provinces.

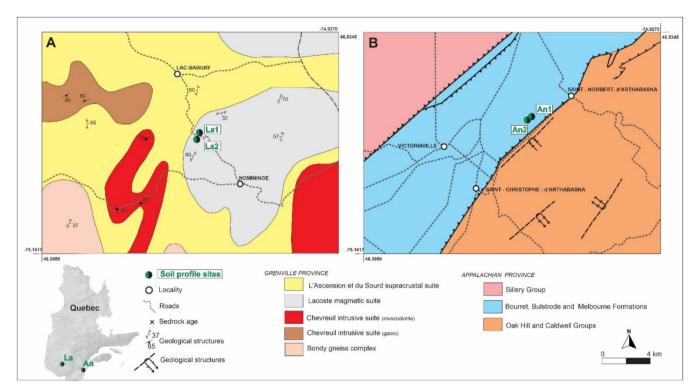


FIGURE 2 | Simplified geological map of studied soil profiles in Nominingue (A) and Saint Norbert d'Arthabaska (B) areas. Based on the Quebec Geological Survey regional map [14].

interleaved with rocks of the Ascension and du Sourd supracrustal suites [29]. The Lacoste Magmatic Suite consists of tonalite, amphibolite, gabbro, enderbite, and monzogranite units [30–35]. The Lacoste Magmatic Suite was emplaced at 1347 Ma and subsequently metamorphosed at 1059 Ma and ~1000 Ma during the Grenville Orogeny [29, 36].

Soil profiles sampled close to the city of Saint Norbert d'Arthabaska (An1 and An2) are underlain by Ordovician to Lower Silurian bedrock of the Appalachian province, consisting of clayey limestone, slate, mudrock, sandstone, and conglomerate from the Bourret, Bulstrode, and Melbourne formations.

For each of the soil profile study areas, five different depth horizons were collected (0–10, 10–20, 20–30, 30–40, and 40–50 cm), following the course of the maple tree roots. We included sampling of coarse roots, stem, leaf, and litter leaf from tree superficies. To evaluate any potential variations related to the progression of the rising sap during the Spring season, samples of sap, sap concentrate (8°Brix for SN samples and 18°Brix for LA samples), and syrup were sampled during the following periods: early season, ½-season, mid-season, ¾ season, and late season.

2.3 | Sample Preparation

Sample preparation procedures and $^{87}{\rm Sr/^{86}Sr}$ analyses (by TIMS and MC-ICP-MS) were carried out at the GEOTOP laboratories (Université du Québec à Montréal, Canada). Samples were prepared in a clean room (ISO 5 standard, 100 particles/ft2), and all digestions used acids prepared with subboiling distilled acids and Mill-Q $\rm H_2O$, 18.2 M Ω cm for dilution. All plastic wares (pipette tips, centrifuge tubes, filters, and resin columns) were

pre-cleaned by soaking the plastics in 1-N HCl for 24h followed by soaking in milli Q water for 24h.

The Sr was extracted from both the bulk soil and the labile fraction of the soil necessitating two different extraction protocols. The labile soil fraction was prepared using 2g of soil sieved to $<\!2\,\text{mm}$. The soil was reacted twice with $10\,\text{mL}$ of super pure ammonium acetate $(NH_4CH_3CO_2)$ for 8 h at room temperature. The supernatant portions were passed through 0.45- μ m polypropylene syringe filters using a 20-mL syringe, and the solution was evaporated at 75°C in preparation for cation chromatography.

Bulk soil fraction samples were ashed in ceramic vessels for $8\,h$ at $750\,^{\circ}C$ (oven). One gram of the ashed soil was weighed into a Teflon beaker ($15\,\text{mL}$) and dissolved with $5\,\text{mL}$ of HF $29\,\text{N}$ over $5\,\text{days}$ at $85\,^{\circ}C$. The resulting solutions were evaporated and redissolved with $1\,\text{mL}$ of 3-N HNO $_3$ at $85\,^{\circ}C$ over $48\,h$.

Maple tree components (root, stem, leaf, leaf litter) were weighed (2g) into a ceramic vessel and ashed in an oven for 8 h at 750°C. After cooling, samples were dissolved in Teflon beakers over a period of 24 h in a solution of 3 mL of nitric acid (3-N HNO $_3$) along with two drops of ultrapure hydrogen peroxide (30% H $_2$ O $_2$).

In our simplified technique, $3\,\mathrm{mL}$ of the organic liquids (sap, sap concentrate or maple syrup) were poured into a 15-mL centrifuge tube and diluted with $10\,\mathrm{mL}$ of Mill-Q $\mathrm{H_2O}$ and manually shaken to produce a thin juice. The thin juice was subsequently loaded in two 7.5-mL aliquots onto 10-mL Bio-RadTM chromatography columns containing $4\,\mathrm{mL}$ of cleaned AG50-X8 resin (100–200 mesh resin in a 1-N HCl solution). Resin was cleaned by passing $5\,\mathrm{mL}$ of 6-N HCl (three

times), followed by $5\,\text{mL}$ of $1\,\text{N}$ HCl (three times). Once the sample was absorbed by the resin, the organic fraction of the thin juice was eluted by adding $15\,\text{mL}$ of $1\,\text{N}$ HCl ($3\times5\,\text{mL}$). The Sr and other cations were subsequently recovered by adding $10\,\text{mL}$ of $6\,\text{N}$ HCl ($2\times5\,\text{mL}$).

To provide validation, three samples were prepared using the protocol proposed above and the more traditional protocol in which 3 mL of sample is reacted with 16-N $\rm HNO_3$ over a 24-h period at 85°C followed by the addition of 2 drops of 30% $\rm H_2O_2$, until total digestion of organic matter [5, 12].

Regardless of the initial protocol, all samples were subsequently dried at 85°C for 24h. In preparation for the purification of the Sr, the samples are dissolved in 1 mL of 8-N HNO. and placed in an ultrasonic bath for 10 min and then centrifuged for 10 min before loading onto the separation columns. Strontium was extracted from the samples by cation exchange chromatography using 0.25 mL of Eichrom Sr-spec resin in a 1-mL Bio-RadTM column. The resin was washed using 2mL of Mill-Q H₂O (one time) and 2 mL of 8 N HNO₂ (three times). Samples were loaded (0.25 mL of sample in four times), rinsed (using 0.5 mL of 8-N HNO₃ for six times) and recovered (using 0.25 mL of 0.05-N HNO, for five times). At the end of the procedure, samples were dried at 85°C for 24h. After evaporation, some maple syrup samples were split into two aliquots to compare analyses via TIMS and MC-ICP-MS. Samples analyzed by TIMS were dissolved in 1-µL 16-N HNO, and loaded onto the Re-filaments using 0.8-µL tantalum oxide activator. Samples analyzed by MC-ICP-MS were dissolved using 5 mL of 2% HNO, and then placed in an ultrasonic bath for 10 min before analysis.

2.4 | Instrumentation and Measurements

For protocol validation, three maple syrup samples were analyzed via TIMS (Thermo Fisher) and multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS, Nu Agilent). Although both instruments are capable of delivering the required precision (0.01%; [37], TIMS is favored for high precision analyses, while the MC-ICP-MS allows for more rapid data acquisition and higher sample throughput [13, 38]. The operating parameters for the instruments are given in Table 1. Samples and standards were introduced in solution mode using a CETAC Aridus II system in which the nebulizer gases (Ar, $\rm N_2$) were optimized for 1.5 L min $^{-1}$ for Ar and 2–3 mL min $^{-1}$ for $\rm N_2$. Potential interferences (Kr, residual Rb, Sr) were corrected by on-peak-zero analyses before each standard or sample analysis.

Repeated measurements (7) of the international standard NIST SRM 987 (Table 2) yielded a $^{87}\mathrm{Sr}/^{86}\mathrm{Sr}$ ratio of 0.71025 ± 0.00001 (2SD) for the TIMS and a 0.71024 ± 0.00001 (2SD) ratio for the MC-ICP-MS over the period of the study, with both agreeing with the certified value (0.710245 ±0.000011 ; [39]. The measured Sr isotope ratios were corrected for instrumental fractionation by normalizing ratios to a $^{86}\mathrm{Sr}/^{87}\mathrm{Sr}$ ratio of 0.1194, and $^{87}\mathrm{Rb}$ interference was corrected using the ratio $^{85}\mathrm{Rb}/^{87}\mathrm{Rb}$ of 2.58745. The total procedure blank for all protocols was less than 100 pg of Sr.

TABLE 1 | Applied operating parameters for mass spectrometers instruments utilized for SRM-987 standard and sample measurements.

MC-ICP-MS	
Reflected power	1300W
Coolant gas (argon) flow rate	$13.5\mathrm{Lmin^{-1}}$
Auxiliary gas (argon) flow rate	$0.85\mathrm{Lmin^{-1}}$
Nebulizer gas (argon) pressure	30.7 psi for Sr
Detection system	6 Faraday collectors (low resolution)
Sample cone orifice	0.9 mm (nickel)
Skimmer cones orifice	0.6 mm (nickel)
Sample uptake rate	$100\mu Lmin^{-1}$
Transmission	$650\mathrm{V}\mathrm{ppm^{-1}}$ for Sr
TIMS	
⁸⁸ Sr signal	5.5 V

TABLE 2 | Comparison of the measured ⁸⁷Sr/⁸⁶Sr ratios of NIST SRM-987 by a multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS, Nu Agilent) and a thermal ionization mass spectrometer (TIMS, Thermo Fisher).

	NIST SRM-987						
	MC-ICP-MS	2SD	TIMS	2SD			
	0.71026	0.00001	0.71026	0.00001			
	0.71023	0.00001	0.71027	0.00001			
	0.71024	0.00001	0.71025	0.00001			
	0.71022	0.00001	0.71025	0.00001			
	0.71023	0.00001	0.71024	0.00000			
	0.71024	0.00001	0.71024	0.00000			
	0.71023	0.00001	0.71026	0.00000			
Av.	0.71024	0.00001	0.71025	0.00001			

3 | Results

3.1 | Protocol Comparisons

A comparison of the Sr isotope ratios for samples obtained by the proposed thin juice method versus the more traditional nitric acid/peroxide oxidation digestion method is shown in Table 3. Both protocols yielded identical Sr isotope ratios (within error) for sap and maple syrup samples LA1, SNA1, and 175, validating the thin juice method. These samples as well as maple syrup samples LA2, 129, and 155 analyzed by both TIMS and MC-ICP-MS instruments also produced similar results (within error). Thus, the thin juice method provides a rapid digestion/separation method for Sr isotopes in liquid-based agri-food products by either TIMS or MC-ICP-MS analysis.

TABLE 3 | Comparison of the measured ⁸⁷Sr/⁸⁶Sr ratios of maple syrup and sap samples, with different instruments.

				MC-IC	MC-ICP-MS TIMS			
Sample	Type	Place	Sample preparation	⁸⁷ Sr/ ⁸⁶ Sr	2SD	⁸⁷ Sr/ ⁸⁶ Sr	2SD	Difference
LA1	Sap	Laurentides	Cation exchange chromatography using a AG50X-8 resin	0.7122	0.00003	0.7122	0.00002	0.00001
LA1	Sap	Laurentides	$48 \mathrm{h}$ at $80^{\circ}\mathrm{C}$ using $\mathrm{HNO_3} + \mathrm{H_2O_2}$	0.7121	0.00002	0.7122	0.00002	0.00000
LA2	Maple syrup	Laurentides	Cation exchange chromatography using a AG50X-8 resin	0.7120	0.00002	0.7120	0.00002	0.00000
SNA1	Maple syrup	Saint Norbert d'Arthabaska	Cation exchange chromatography using a AG50X-8 resin	0.7092	0.00002	0.7091	0.00002	0.00000
SNA1	Maple syrup	Saint Norbert d'Arthabaska	$48 \mathrm{h}$ at $80^{\circ}\mathrm{C}$ using $\mathrm{HNO_3} + \mathrm{H_2O_2}$	0.7092	0.00002	0.7091	0.00002	0.00000
175	Maple syrup	Les Maskoutains	Cation exchange chromatography using a AG50X-8 resin	0.7098	0.00002	0.7098	0.00002	-0.00001
175	Maple syrup	Les Maskoutains	$48 \mathrm{h}$ at $80^{\circ}\mathrm{C}$ using $\mathrm{HNO_3} + \mathrm{H_2O_2}$	0.7098	0.00003	0.7098	0.00005	-0.00002
129	Maple syrup	Rivière- du-Loup	Cation exchange chromatography using a AG50X-8 resin	0.7107	0.00001	0.7107	0.00001	0.00000
155	Maple syrup	Vaudreuil- Soulanges	Cation exchange chromatography using a AG50X-8 resin	0.7094	0.00001	0.7094	0.00002	0.00000

3.2 | Soil Profile Studies

Strontium isotope ratios from soil profiles and maple syrup samples are shown in Tables 4 and 5 and are plotted in Figure 3.

In the Saint Norbert d'Arthabaska study area (An1 and An2 soil profiles), the ⁸⁷Sr/⁸⁶Sr isotope ratios of the bulk soils range from 0.7121 to 0.7168 and the labile fraction of the soils ranges from 0.7091 to 0.7093. The ⁸⁷Sr/⁸⁶Sr isotope ratios of the bulk soils are substantially more radiogenic and more variable than the ratios of the labile Sr fraction. The difference reflects the abundance of ⁸⁷Sr in Rb-rich silicates such as K-Feldspar and micas that are only released through the HF-HNO3 dissolution of the bulk soil fractions compared to the ⁸⁷Sr-poor phases (carbonates, loosely held Sr on mica surfaces) that are released during the labile soil extraction (see discussions in [5, 10, 12, 40, 41]).

The root, stem, leaf, and leaf litter samples yield ⁸⁷Sr/⁸⁶Sr ratios between 0.7092 and 0.7095. The sap, sap concentrate, and syrup sampled during different periods (early, ¹/₄, mid, ³/₄, and late season) yielded very consistent values between 0.7091 and 0.7092. More importantly, the observed distribution entirely overlaps the range of values obtained from tree samples and the labile soil fraction (0.7091–0.7093).

The Sr-isotope compositions of samples from the Laurentides region of the Grenville province (La1 and La2) are more variable. Labile soil fractions from La1 vary from 0.7119 to 0.7120 while bulk soil ratios vary from 0.7125 to 0.7166. The La2 profile yields higher ratios of 0.7130–0.7139 for the labile fraction soil and 0.7124–0.7142 for the bulk fraction soil. The different components of the maple tree show a strong correlation with the labile soil fraction, with ratios between 0.7124 and 0.7142 (La1) and 0.7124 and 0.7142 (La2). Maple syrup products, including sap and concentrate sampled during different periods of the season (early, ¼, mid, ¾, and late), vary between 0.7117 and 0.7122. ⁸⁷Sr/⁸⁶Sr values from the Laurentides study area are consistently higher than those from the Saint Norbert d'Arthabaska.

The large range in the labile soil fraction from the Laurentides area (0.712–0.714) suggests that the underlying geology is more variable than that in the Saint Norbert d'Arthabaska area. The heterogeneity of the labile soil values may reflect the presence of small intrusions and veins within the orthogneisses from Lacoste suite [32]. In contrast, the more limited range derived from the maple syrup samples was derived from maple syrup collected from trees over a wide area, thus representing an average of ⁸⁷Sr/⁸⁶Sr soil values in the producing region.

TABLE 4 | Sr isotope ratios for tree samples, leaf litter, and soil profile samples.

87Sr/86Sr **Profile** Sample 2SD La1 Leaf litter 0.7123 0.00001 Leaves 0.7122 0.00002 Stem 0.7122 0.00002 Coarse roots 0.00003 0.7124 Labile soil 0-10 cm 0.7119 0.00002 Labile soil 10-20 cm 0.00005 0.7120 Labile soil 20-30 cm 0.7119 0.00002 Labile soil 30-40 cm 0.7120 0.00005 Labile soil 40-50 cm 0.7119 0.00003 Bulk soil 0-10cm 0.7166 0.00001 Bulk soil 10-20 cm 0.7161 0.00002 Bulk soil 20-30 cm 0.7142 0.00001 Bulk soil 30-40 cm 0.7125 0.00001 Bulk soil 40-50 cm 0.7162 0.00001 La2 Leaf litter 0.7134 0.00001 Leaves 0.7133 0.00001 Stem 0.7133 0.00002 Coarse roots 0.7134 0.00002 Labile soil 0-10 cm 0.00002 0.7131 Labile soil 10-20 cm 0.7130 0.00003 Labile soil 20-30 cm 0.00003 0.7131 Labile soil 30-40 cm 0.7130 0.00003 Labile soil 40-50 cm 0.7139 0.00003 Bulk Soil 0-10 cm 0.7142 0.00001 Bulk soil 10-20 cm 0.00002 0.7133 Bulk soil 20-30 cm 0.7133 0.00001 Bulk soil 30-40 cm 0.7124 0.00001 Bulk soil 40-50 cm 0.7139 0.00001

(Continues)

The results from all four studied profiles (Figure 3) confirm the similarity of the Sr isotope compositions of the labile soil fractions and corresponding maple trees and maple syrups. Thus, Sr isotopes are not affected by pedogenic and biologic processes, indicating that the Sr isotope composition of the labile soils can be determined by analyzing the corresponding maple products. In addition, the Sr isotope analyses of the sap, concentrate, and maple syrup products collected during early, ¼, mid, ¾, and late season of 2019 (Tables 4 and 5) yield comparable compositions. This is consistent with the observation that agrifood processing such as the fermentation of wine [13, 41, 42] or evaporation of maple syrup (present study) does not affect the ⁸⁷Sr/⁸⁶Sr isotopic signature of agrifood products.

TABLE 4 | (Continued)

Profile	Sample	⁸⁷ Sr/ ⁸⁶ Sr	2SD
An1	Leaf litter	0.7093	0.00001
	Leaves	0.7092	0.00001
	Stem	0.7092	0.00002
	Coarse roots	0.7094	0.00002
	Labile soil 0–10 cm	0.7091	0.00003
	Labile soil 10–20 cm	0.7093	0.00002
	Labile soil 20–30 cm	0.7092	0.00002
	Labile soil 30–40 cm	0.7091	0.00004
	Labile soil 40–50 cm	0.7093	0.00004
	Bulk soil 0–10 cm	0.7168	0.00001
	Bulk soil 10–20 cm	0.7165	0.00001
	Bulk soil 20–30 cm	0.7162	0.00002
	Bulk soil 30-40 cm	0.7162	0.00004
	Bulk soil 40–50 cm	0.7160	0.00002
An2	Leaf litter	0.7093	0.00002
	Leaves	0.7092	0.00002
	Stem	0.7092	0.00001
	Coarse roots	0.7095	0.00001
	Labile soil 0–10 cm	0.7092	0.00002
	Labile soil 10–20 cm	0.7093	0.00002
	Labile soil 20–30 cm	0.7092	0.00002
	Labile soil 30–40 cm	0.7092	0.00003
	Labile soil 40–50 cm	0.7092	0.00003
	Bulk soil 0–10 cm	0.7185	0.00002
	Bulk soil 10–20 cm	0.7186	0.00002
	Bulk soil 20–30 cm	0.7167	0.00001
	Bulk soil 30-40 cm	0.7166	0.00001
	Bulk soil 40–50 cm	0.7211	0.00001

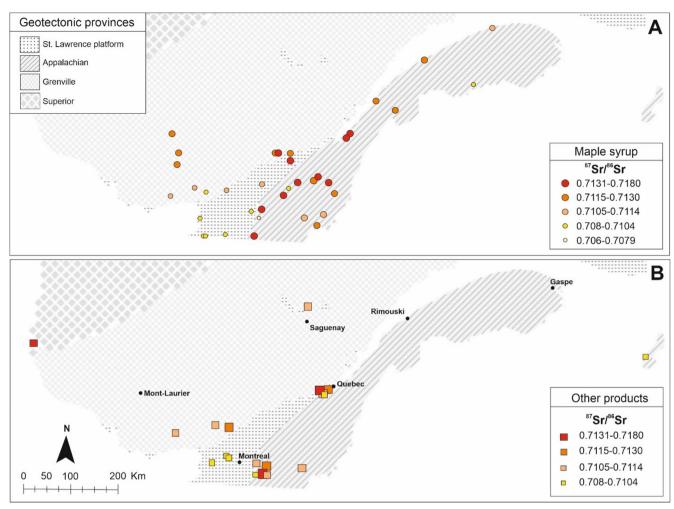
3.3 | Regional Maple Syrup Results

The ⁸⁷Sr/⁸⁶Sr isotope compositions for maple syrup samples from across Quebec are presented in Table 6. The large range (from 0.7069 to 0.7177) in the ⁸⁷Sr/⁸⁶Sr isotope ratios of the maple syrup from across Quebec (Figure 4A) reflects the diverse ages and rock types of the three geological provinces from which the maple syrup samples were derived.

For example, the lowest ⁸⁷Sr/⁸⁶Sr ratio measured among the maple syrup samples was derived from a maple bush on the flanks of an intermediate to ultramafic Cretaceous alkaline intrusion in the Roxton-Pond region, emplaced along the border of the Appalachian and St. Lawrence platform geological provinces.

TABLE 5 | Sr isotope ratios of maple sap products (sap, concentrate, and syrup).

		La1 ar	nd La2	An1 and	l An2
Collected season	Type	⁸⁷ Sr/ ⁸⁶ Sr	2SD	⁸⁷ Sr/ ⁸⁶ Sr	2SD
Early	Sap	0.7121	0.00002	0.7092	0.00002
	Concentrate	0.7121	0.00001	0.7091	0.00001
	Syrup	0.7119	0.00001	0.7092	0.00001
1/4	Sap	0.7122	0.00003	0.7091	0.00002
	Concentrate	0.712	0.00004	0.7091	0.00001
	Syrup	0.712	0.00002	0.7092	0.00002
Mid	Sap	0.7118	0.00003	0.7092	0.00001
	Concentrate	0.7118	0.00002	0.7091	0.00001
	Syrup	0.7119	0.00002	0.7091	0.00001
3/4	Sap	0.712	0.00001	0.7091	0.00001
	Concentrate	0.7118	0.00002	0.7092	0.00002
	Syrup	0.7121	0.00001	0.7092	0.00002
Late	Sap	0.7121	0.00001	0.7092	0.00002
	Concentrate	0.7119	0.00002	0.7092	0.00001
	Syrup	0.7117	0.00002	0.7092	0.00001


FIGURE 3 | A comparison of ⁸⁷Sr/⁸⁶Sr values determined in bulk and labile fraction soil, maple root, stem, leaf litter, leaves, sap, concentrate sap, and syrup from Nomimingue (Laurentides) and Saint Norbert d'Arthabaska soil profiles.

In the Grenville province, the highest ⁸⁷Sr/⁸⁶Sr isotope composition (0.7149) is related to paragneiss rocks in the region of St-Ubalde, while the lowest ⁸⁷Sr/⁸⁶Sr isotope composition (0.7085) is derived from a maple bush overlying a meta-sedimentary

sequence consisting of marble, calc-silicate rocks, dolomite, quartz feldspathic schists, and quartzite from the Pays-d'en-Haut area. Maple syrup samples derived from granite and orthogneiss terrains within the Grenville province generally

TABLE 6 | 87Sr/86Sr results of maple syrup samples.

Province	Sample	Place	Region	⁸⁷ Sr/ ⁸⁶ Sr	2SD
St. Lawrence platform	L01	Vaudreuil-Soulanges	Montérégie	0.7094	0.00001
	L02	Haut St-Laurent	Montérégie	0.7102	0.00002
	L03	Hinchinbrooke	Hinchinbrooke	0.7102	0.00002
	L04	Les Jardins-de-Napierville	Montérégie	0.7099	0.00001
	L05	Les Maskoutains	Montérégie	0.7098	0.00003
	L06	St-Alexis-De-Montcalm	St-Alexis-De-Montcalm	0.7092	0.0000
	L07	Nicolet-Yamaska	Centre-du-Québec	0.7110	0.0000
	L08	Lotbinière	Chaudière-Appalaches	0.7161	0.0000
Appalachian	A01	Brome-Missisquoi	Estrie	0.7168	0.0000
	A02	Roxton-Pond	Roxton-Pond	0.7069	0.0000
	A03	Acton	Montérégie	0.7152	0.0000
	A04	d'Arthabaska	Centre-du-Québec	0.7177	0.0000
	A05	Saint Norbert d'Arthabaska	Centre-du-Québec	0.7091	0.0000
	A06	de L'Érable	Centre-du-Québec	0.7168	0.0000
	A07	St-Pierre-De-Broughton	St-Pierre-De-Broughton	0.7143	0.0000
	A08	St-Severin-De-Beauce	St-Severin-De-Beauce	0.7159	0.0000
	A09	Robert-Cliche	Chaudière-Appalaches	0.7170	0.0000
	A10	Beauce-Sartigan	Chaudière-Appalaches	0.7119	0.0000
	A11	du Granit	Estrie	0.7121	0.0000
	A12	Notre-Dame-Des-Bois	Notre-Dame-Des-Bois	0.7127	0.0000
	A13	Haut-Saint-François	Estrie	0.7111	0.0000
	A14	L'Islet	Chaudière-Appalaches	0.7174	0.0000
	A15	St-Auber	St-Auber	0.7171	0.0000
	A16	Rivière-du-Loup	Bas-Saint-Laurent	0.7107	0.0000
	A17	Témiscouata	Bas-Saint-Laurent	0.7120	0.0000
	A18	La Mitis	Bas-Saint-Laurent	0.7124	0.0000
	A19	Marsoui	Marsoui	0.7102	0.0000
	A20	d'Avignon	Gaspésie–Îles-de-la-Madeleine	0.7098	0.0000
Grenville	G01	Antoine-Labelle	Laurentides	0.7121	0.0000
	G02	Laurentides	Laurentides	0.7121	0.0000
	G03	Nominingue	Nominingue	0.7124	0.0000
	G04	Papineau	l'Outaouais	0.7105	0.0000
	G05	Montcalm	Lanaudière	0.7102	0.0000
	G06	Montcalm	Lanaudière	0.7092	0.0000
	G07	Pays-d'en-Haut	Laurentides	0.7085	0.0000
	G08	L'avenir	L'avenir	0.7116	0.0000
	G09	St-Ubalde	St-Ubalde	0.7149	0.0000
	G10	Portneuf	Capitale-Nationale	0.7102	0.0000
	G11	Portneuf	Capitale-Nationale	0.7111	0.0000

FIGURE 4 | Map showing the sample type and distribution of strontium isotope ratios (87 Sr/ 86 Sr) in the province of Quebec using both present and compiled bioavailable sample results. Maple syrup sampling locations of the study are indicated (circles, A) as well as other products (cheese, milk, wine) sampling sites (squares, B). See database in Supporting Information.

show a lower degree of variability in their ⁸⁷Sr/⁸⁶Sr isotope compositions (from 0.7102 to 0.7124). The samples from the Montcalm and Portneuf maple groves are derived from regions that straddle both the Grenville province and the St. Lawrence Platform; thus, the variation in their Sr isotope compositions (0.7092–0.7111) may reflect the geology of both provinces.

Appalachian province samples display values ranging from 0.7091 to 0.7177, reflecting the different geological features of the sampled terrains. The lowest value is associated with limestone-rich terrains from Saint Norbert d'Arthabaska Centre-du-Québec as well as clay-limestones sequences from d'Avignon, Gaspésie, and les Îles-de-la-Madeleine (0.7098). The highest values are associated with a bedrock consisting of micarich schists and metapelites that characterize the central portion of the Appalachian province.

In contrast to the above provinces, the variation in ${}^{87}\text{Sr}/{}^{86}\text{Sr}$ isotope compositions for maple samples from the St Lawrence platform is relatively low (0.7092–0.7110). The Lotbinière maple syrup value (0.7162) can be considered an outlier. The bedrock in this region consists of Ordovician mudrocks and shales of

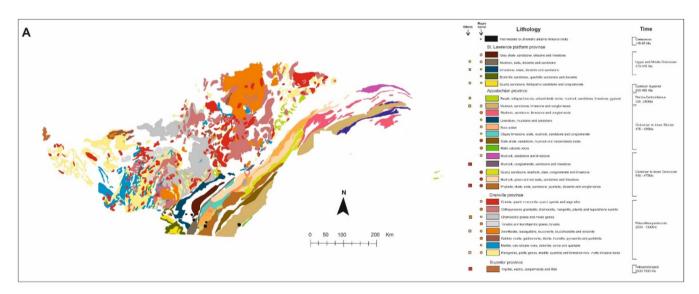
the Lorraine Group. The higher ⁸⁷Sr/⁸⁶Sr ratio could reflect the clay-rich nature of the Lorraine Group.

4 | Discussion

The Sr isotope data for the maple syrup analyses that are plotted on the map in Figure 4a are compared with the locations of previously studied agrifood products such as cheese, milk, and wine (Figure 4B). There is a general similarity in the range of Sr isotope ratios in a given geological province for the different agrifood products.

4.1 | Bioavailable 87Sr/86Sr Map of Quebec

Strontium bioavailable mapping (isoscapes) uses the present-day ⁸⁷Sr/⁸⁶Sr ratios of bedrock, soils, and plants to create a map in combination with geological data [43]. Bioavailable ⁸⁷Sr/⁸⁶Sr maps of varying types of samples, scales, and resolutions have been globally published for traceability purposes, in small or large scales [40]. Combining lithological and bioavailable maps


provides a means of estimating the bioavailable ⁸⁷Sr/⁸⁶Sr; however, there are advantages and limitations of mapping bioavailable 87Sr/86Sr and bedrock background for provenance studies [41-43]. Authors (see reviews by [44]) have noted the indiscriminate use of isotopic data without the evaluation of types of sampled materials (rock, labile soils, ground water, plants, tooth, bone, wine, etc.). [45] concluded that small animals, plants, and soils are the preferred types of samples to develop ⁸⁷Sr/⁸⁶Sr isoscape maps. In light of this consensus, we combined the regional Sr isotope data for the maple syrup analyses of this study with previously published agrifood Sr isotope studies in Quebec (data in Table S1) to construct a bioavailable Sr isotope map for the province (Figure 5). The Sr isotope data was incorporated in ESRI ArcGIS Pro 3.0.0 using the Spatial Analyst and Geostatistical Analyst extensions coupled with a geological map of Quebec (1:2000.000, [14]).

The large sampling density, availability of high-quality lithological maps, and proven strong correlation of ⁸⁷Sr/⁸⁶Sr values

between rock, soil, labile soil, and agrifood products [10, 13, 18] lend themselves well to the production of an isocape. The isoscape provides context for future Sr isotope agrifood studies for terroir characterization and Sr isotope studies for biometric tracing of human and fauna migration.

In Figure 5A, we selected 26 lithological units that presented one or more Sr isotope results. Similar ⁸⁷Sr/⁸⁶Sr ratios for either maple syrup, tree roots, or other agricultural samples (milk, cheese) from the same geological unit underscore the geological dependence of the bioavailable Sr and the integrity of the ⁸⁷Sr/⁸⁶Sr isoscape maps. However, in the 26 different lithologies investigated, overlapping ⁸⁷Sr/⁸⁶Sr ratios were found in 8 of the lithological units, indicating that the strontium isotope ratios are not exclusive to a given geological unit.

In Figure 5B, the lithological units underlying the agrifood products from the province of Quebec are color-coded into 5 different isotope groups based on spatial analysis (see Supporting

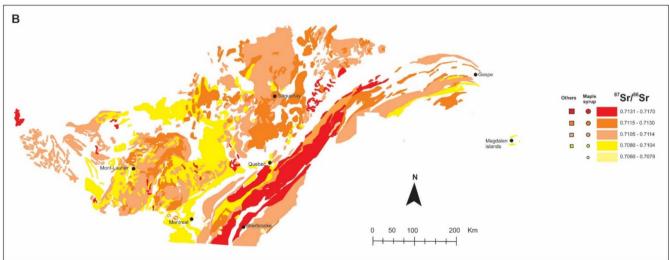


FIGURE 5 | (A) Lithological map of Quebec showing units with bioavailable ⁸⁷Sr/⁸⁶Sr results. The presented lithologies represent all units with ⁸⁷Sr/⁸⁶Sr information analyzed in this work or included from the literature. Agrifood ⁸⁷Sr/⁸⁶Sr values were extrapolated to the same rock units; (B) ⁸⁷Sr/⁸⁶Sr Isoscape showing the evolution of bioavailable strontium ratios into Superior, Grenville, Appalachian, and St. Lawrence platform geotectonic provinces individualized by period and lithology. Maps developed in ArcGIS Pro using the geological database from Quebec province [14].

Information) and represent the first bioavailable ${}^{87}\mathrm{Sr}/{}^{86}\mathrm{Sr}$ map for Canada.

The map reveals that lithologies with the highest Sr isotope ratios (0.7131-0.7177) are predominantly associated with mudrocks that are typically enriched in 87Sr due to their Rb-rich compositions. Examples of these types of rocks are found in Cambrian to Ordovician (540–470 Ma) rocks in the Appalachian Province. Spatial patterns of 87Sr/86Sr results from Rb-rich rocks are pronounced, following the regional geology, and elongated along a NE-SW direction, with higher 87Sr/86Sr in the central part of the map. These rocks encompass an age range between 550 and 435 Ma and are systematically higher than those of the adjoining Saint Lawrence platform (470-450 Ma). This distribution indicates that the 87Sr/86Sr results are not necessarily associated with a specific province or age, but with rock composition (Figure 5). For example, the lowest Sr isotope ratios are related to maple syrup samples from Sr-rich carbonate rocks in the Grenville (0.7085), Appalachian (0.7090) and Saint Lawrence platform (0.7092) provinces. This first bioavailable ⁸⁷Sr/⁸⁶Sr map of Quebec is encouraging, but due to the high complexity of the geology, a clearer discrimination of 87Sr/86Sr distribution can be obtained by densifying and diversifying sample collections and geological unities.

5 | Conclusions

This paper reported an improved method for the separation of strontium for ⁸⁷Sr/⁸⁶Sr isotope ratio studies in liquids by combining two different cation-exchange chromatography steps. Results confirm that ⁸⁷Sr/⁸⁶Sr maple syrup methodology can be considered a reliable protocol for use in agri-food provenance studies.

This study demonstrated that there is no fractionation of the ⁸⁷Sr/⁸⁶Sr ratio between the labile soil fraction, different parts of the maple tree, and all products from maple sap (sap, concentrate and maple syrup). We also did not notice differences during the different phases of evaporation of the sap to produce maple syrup. We confirm that the underlying geology is the dominant control on the isotope composition across different geological provinces in Quebec. The study demonstrates that the ⁸⁷Sr/⁸⁶Sr ratios of maple syrup are faithful to the underlying geology and that the ⁸⁷Sr/⁸⁶Sr ratios can be a powerful tracer of provenance at the local scale with local geological control.

The data from this study was used to develop a bioavailable ⁸⁷Sr/⁸⁶Sr map of Quebec that can be used to predict the geographical origin of agrifood products from southern Quebec. The map is a promising first step given the relatively small density of samples. Further sampling is needed to establish the robustness of the method and the map.

Author Contributions

R. Stevenson: conceptualization, investigation, funding acquisition, methodology, validation, visualization, writing – review and editing, supervision. **M. Sadiki:** conceptualization, investigation, funding acquisition, writing – review and editing, methodology, validation,

resources. **L. Lagacé**: conceptualization, investigation, funding acquisition, methodology, validation, writing – review and editing, resources. **D. Widory**: conceptualization, investigation, funding acquisition, methodology, validation, writing – review and editing, supervision, resources, project administration.

Acknowledgments

Postdoctoral scholarship for B. Saar de Almeida was provided by the MITACS organization (grant no. IT26291).

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

- 1. L. Lagace, S. Leclerc, C. Charron, and M. Sadiki, "Biochemical Composition of Maple Sap and Relationships Among Constituents," *Journal of Food Composition and Analysis* 41 (2015): 129–136, https://doi.org/10.1016/j.jfca.2014.12.030.
- 2. M. F. Morselli, "Chemical Composition of Maple Syrup," Maple Research Data No. 1, Burlington, 1975.
- 3. J. G. Stuckel and N. H. Low, "The Chemical Composition of 80 Pure Maple Syrup Samples Produced in North America," *Food Research International* 29 (1996): 373–379, https://doi.org/10.1016/0963-9969(96) 00000-2.
- 4. R. Cellier, S. Berail, J. Barre, et al., "Analytical Strategies for Sr and Pb Isotopic Signatures by MC-ICP-MS Applied to the Authentication of Champagne and Other Sparkling Wines," *Talanta* 234 (2021): 122433, https://doi.org/10.1016/j.talanta.2021.122433.
- 5. V. Vinciguerra, R. Stevenson, K. Pedneault, A. Poirier, J.-F. Hélie, and D. Widory, "Strontium Isotope Characterization of Wines From Quebec, Canada," *Food Chemistry* 210 (2016): 121–128, https://doi.org/10.1016/j.foodchem.2016.04.017.
- 6. S. Voerkelius, G. D. Lorenz, S. Rummel, et al., "Strontium Isotopic Signatures of Natural Mineral Waters, the Reference to a Simple Geological Map and Its Potential for Authentication of Food," *Food Chemistry* 118 (2010): 933–940, https://doi.org/10.1016/j.foodchem.2009.04.125.
- 7. C. C. Schnetzler and J. A. Philpotts, "Partition Coefficients of Rare-Earth Elements Between Igneous Matrix Material and Rock-Forming Mineral Phenocrysts—II," *Geochimica et Cosmochimica Acta* 34 (1970): 331–340, https://doi.org/10.1016/0016-7037(70)90110-9.
- 8. M. Berglund and M. E. Wieser, "Isotopic Compositions of the Elements 2009 (IUPAC Technical Report)," *Pure and Applied Chemistry* 83 (2011): 397–410, https://doi.org/10.1351/PAC-REP-10-06-02.
- 9. S. García-Ruiz, M. Moldovan, G. Fortunato, S. Wunderli, and J. I. García Alonso, "Evaluation of Strontium Isotope Abundance Ratios in Combination With Multi-Elemental Analysis as a Possible Tool to Study the Geographical Origin of Ciders," *Analytica Chimica Acta* 590 (2007): 55–66, https://doi.org/10.1016/j.aca.2007.03.016.
- 10. B. Saar de Almeida, "87Sr/86Sr Isotopic Characterization as a Tool for the Designation of Origin and Geographical Indication: Application to Volcanic Rocks, Soils, Grapes and Wines From Brazil and Italy" (PhD thesis, Università degli Studi di Napoli Federico II, 2021).
- 11. R. Stevenson, S. Desrochers, and J.-F. Hélie, "Stable and Radiogenic Isotopes as Indicators of Agri-Food Provenance: Insights From Artisanal Cheeses From Quebec, Canada," *International Dairy Journal* 49 (2015): 37–45, https://doi.org/10.1016/j.idairyj.2015.04.003.
- 12. L. Guibourdenche, R. Stevenson, K. Pedneault, A. Poirier, and D. Widory, "Characterizing Nutrient Pathways in Quebec (Canada) Vineyards: Insight From Stable and Radiogenic Strontium Isotopes,"

- Chemical Geology 532 (2020): 119375, https://doi.org/10.1016/j.chemg eo.2019.119375.
- 13. M. Mercurio, E. Grilli, P. Odierna, et al., "A 'Geo-Pedo-Fingerprint' (GPF) as a Tracer to Detect Univocal Parent Material-to-Wine Production Chain in High Quality Vineyard Districts, Campi Flegrei (Southern Italy)," *Geoderma* 230–231 (2014): 64–78, https://doi.org/10.1016/j.geoderma.2014.04.006.
- 14. R. Thériault and S. Beauséjour, "Carte géologique du Québec, édition 2012," 2012.
- 15. D. Houle, C. Marty, C. Gagnon, S. B. Gauthier, and N. Bélanger, "Is the Past History of Aciditic Deposition in Eastern Canada Reflected in Sugar Maple's Tree Rings ⁸⁷Sr/⁸⁶Sr, Sr and Ca Concentrations?," *Applied Geochemistry* 125 (2021): 104860.
- 16. J. D. Greenough, B. J. Fryer, and L. Mallory-Greenough, "Trace Element Geochemistry of Nova Scotia (Canada) Maple Syrup," *Canadian Journal of Earth Sciences* 47, no. 8 (2010): 1093–1110, https://doi.org/10.1139/e10-055.
- 17. P. Horn, S. Hölzl, W. Todt, and D. Matthies, "Isotope Abundance Ratios of Sr in Wine Provenance Determinations, in a Tree-Root Activity Study, and of Pb in a Pollution Study on Tree-Rings," *Isotopes in Environmental and Health Studies* 34 (1998): 31–42, https://doi.org/10.1080/10256019708036329.
- 18. S. Marchionni, E. Braschi, S. Tommasini, et al., "High-Precision ⁸⁷Sr/⁸⁶Sr Analyses in Wines and Their Use as a Geological Fingerprint for Tracing Geographic Provenance," *Journal of Agricultural and Food Chemistry* 61 (2013): 6822–6831, https://doi.org/10.1021/jf4012592.
- 19. I. Tescione, S. Marchionni, M. Casalini, N. Vignozzi, M. Mattei, and S. Conticelli, "87Sr/86Sr Isotopes in Grapes of Different Cultivars: A Geochemical Tool for Geographic Traceability of Agriculture Products," *Food Chemistry* 258 (2018): 374–380, https://doi.org/10.1016/j.foodchem.2018.03.083.
- 20. C. Vorster, L. Greeff, and P. P. Coetzee, "The Determination of $^{11}\text{B}/^{10}\text{B}$ and $^{87}\text{Sr}/^{86}\text{Sr}$ Isotope Ratios by Quadrupole-Based ICP-MS for the Fingerprinting of South African Wine," *January 2010South African Journal of Chemistry* 63 (2010): 207–214.
- 21. C. M. Almeida and M. T. S. D. Vasconcelos, "ICP-MS Determination of Strontium Isotope Ratio in Wine in Order to Be Used as a Fingerprint of Its Regional Origin," *Journal of Analytical Atomic Spectrometry* 16 (2001): 607–611, https://doi.org/10.1039/b100307k.
- 22. C. Durante, C. Baschieri, L. Bertacchini, et al., "An Analytical Approach to Sr Isotope Ratio Determination in Lambrusco Wines for Geographical Traceability Purposes," *Food Chemistry* 173 (2015): 557–563, https://doi.org/10.1016/j.foodchem.2014.10.086.
- 23. M. V. Baroni, N. S. Podio, R. G. Badini, et al., "Linking Soil, Water, and Honey Composition To Assess the Geographical Origin of Argentinean Honey by Multielemental and Isotopic Analyses," *Journal of Agricultural and Food Chemistry* 63, no. 18 (2015): 4638–4645, https://doi.org/10.1021/jf5060112.
- 24. D. M. T. Nguyen, "Colour Removal From Sugar Cane Juice" (PhD thesis, Queensland University of Technology, 2013).
- 25. N. H. Paton, "The Origin of Colour in Raw Sugar," Proceedings of the Australian Society of Sugar Cane Technologists 14 (1992): 8–17.
- 26. F. W. Zerban, "The Color Changes of Sugar-Cane Juice and the Nature of Cane Tannin," *Journal of Industrial and Engineering Chemistry* 11 (1919): 1034–1036, https://doi.org/10.1021/ie50119a012.
- 27. M. C. Thompson, "Softening of Clear Juice," Proceedings of the South Africa Sugar Technologists Association 68 (1994): 115–120.
- 28. A. Tremblay, R. Hébert, and M. Bergeron, "Le Complexe d'Ascot des Appalaches du sud du Québec: pétrologie et géochimie," *Canadian Journal of Earth Sciences* 26 (1989): 2407–2420, https://doi.org/10.1139/e89-206.

- 29. D. W. Davis and S. Nantel, "Datations U-Pb dans la partie nord de la ceinture centrale des metasediments, province de Grenville, region de Mont-Laurier," MERN. MB 2016-04, 2016.
- 30. A. Moukhsil, G. Cote, "Geologie Wemotaci," MERN. CG-2016-01, 2016.
- 31. A. Moukhsil and F. Solgadi, "Clova," MERN. CG-2015-01, 2015.
- 32. S. Nantel, "Geologie et apercu de la geochronologie et des indices metalliques decouverts entre 1996 et 2007 dans la partie nord de la ceinture centrale des metasediments, province de Grenville, region de Mont-Laurier," MRNF. DV 2008-04, 2008.
- 33. S. Nantel, E. Giguere, and T. Clark, "Geologie de la region du lac duplessis (310/06)," MRNFP. RG 2004-03, 2004.
- 34. S. Nantel and F. Giroux, "Geologie de la region du Lac Pine, partie sud (310/02)," MRNFP. RG 2004-03, 2005.
- 35. S. Nantel and P. Lacoste, "Geologie de la region du lac Pine, partie nord (310/02) et du lac Adonis (310/07)," MRNF. RG 2005-03, 2005.
- 36. A. Moukhsil, F. Solgadi, S. Belkacim, L. E. Augland, and J. David, "Geologie de la region de Parent, Haut-Saint-Maurice (partie ouest du Grenville)," RG 2015-04, 2015.
- 37. M. Barbaste, L. Halicz, A. Galy, et al., "Evaluation of the Accuracy of the Determination of Lead Isotope Ratios in Wine by ICP MS Using Quadrupole, Multicollector Magnetic Sector and Time-of-Flight Analyzers," *Talanta* 54, no. 2 (2001): 307–317, https://doi.org/10.1016/s0039 -9140(00)00651-2.
- 38. M. Barbaste, M. Barbaste, K. Robinson, S. Guilfoyle, B. Medina, and R. Lobinski, "Precise Determination of the Strontium Isotope Ratios in Wine by Inductively Coupled Plasma Sector Field Multicollector Mass Spectrometry (ICP-SF-MC-MS)," *Journal of Analytical Atomic Spectrometry* 17 (2002): 135–137, https://doi.org/10.1039/b109559p.
- 39. M. F. Thirlwall, "Long-Term Reproducibility of Multicollector Sr and Nd Isotope Ratio Analysis," *Chemical Geology* 94, no. 2 (1991): 85–104, https://doi.org/10.1016/s0009-2541(10)80021-x.
- 40. S. Marchionni, A. Buccianti, A. Bollati, et al., "Conservation of ⁸⁷Sr/⁸⁶Sr Isotopic Ratios During the Winemaking Processes of "Red" Wines to Validate Their Use as Geographic Tracer," *Food Chemistry* 190 (2016): 777–785, https://doi.org/10.1016/j.foodchem.2015.06.026.
- 41. R. Petrini, L. Sansone, F. F. Slejko, A. Buccianti, P. Marcuzzo, and D. Tomasi, "The ⁸⁷Sr/⁸⁶Sr Strontium Isotopic Systematics Applied to Glera Vineyards: A Tracer for the Geographical Origin of the Prosecco," *Food Chemistry* 170 (2015): 138–144, https://doi.org/10.1016/j.foodchem. 2014.08.051.
- 42. B. Saar de Almeida, L. Fedele, M. D'Antonio, et al., "Characterizing Wine Terroir Using Strontium Isotope Ratios: A Review," *Isotopes in Environmental and Health Studies* 59 (2023): 327–348, https://doi.org/10.1080/10256016.2023.2245122.
- 43. B. Beard and C. Johnson, "Strontium Isotope Composition of Skeletal Material Can Determine the Birth Place and Geographic Mobility of Humans and Animals," *Journal of Forensic Sciences* 45 (2000): 1049–1061, https://doi.org/10.1520/JFS14829J.
- 44. J. A. Evans, J. Montgomery, G. Wildman, and N. Boulton, "Spatial Variations in Biosphere ⁸⁷Sr/⁸⁶Sr in Britain," *Journal of the Geological Society of London* 167 (2010): 1–4, https://doi.org/10.1144/0016-76492 009-090.
- 45. M. Hamilton, S. V. Nelson, D. P. Fernandez, and K. D. Hunt, "Detecting Riparian Habitat Preferences in "Savanna" Chimpanzees and Associated Fauna With Strontium Isotope Ratios: Implications for Reconstructing Habitat use by the Chimpanzee-Human Last Common Ancestor," *American Journal of Physical Anthropology* 170 (2019): 551–564, https://doi.org/10.1002/ajpa.23932.
- 46. P. M. Vitousek, M. J. Kennedy, L. A. Derry, and O. A. Chadwick, "Weathering Versus Atmospheric Sources of Strontium in Ecosystems

- on Young Volcanic Soils," *Oecologia* 121 (1999): 255–259, https://doi.org/10.1007/s004420050927.
- 47. J. O. Warham, "Mapping Biosphere Strontium Isotope Ratios Across Major Lithological Boundaries. A Systematic Investigation of the Major Influences on Geographic Variation in the ⁸⁷Sr/⁸⁶Sr Composition of Bioavailable Strontium Above the Cretaceous and Jurassic Rocks of England" (PhD thesis, University of Bradford, 2011).
- 48. E. Holt, J. A. Evans, and R. Madgwick, "Strontium (87Sr/86Sr) Mapping: A Critical Review of Methods and Approaches," *Earth-Science Reviews* 216 (2021): 103593, https://doi.org/10.1016/j.earscirev.2021. 103593.
- 49. C. P. Bataille, B. E. Crowley, M. J. Wooller, and G. J. Bowen, "Advances in Global Bioavailable Strontium Isoscapes," *Palaeogeography Palaeoclimatology Palaeocology* 555 (2020): 109849, https://doi.org/10.1016/j.palaeo.2020.109849.

Supporting Information

Additional supporting information can be found online in the Supporting Information section.